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Abstract Drought is a climatic event that can cause

significant damage both in natural environment and in

human lives. Drought forecasting is an important issue in

water resource planning. Due to the stochastic behaviour of

droughts, a multiplicative seasonal autoregressive inte-

grated moving average model was applied to forecast

monthly streamflow in a small watershed in Galicia (NW

Spain). A better streamflow forecast obtained when the

Martone index was included in the model as explanatory

variable. After forecasting 12 leading month streamflow,

three drought thresholds: streamflow mean, monthly

streamflow mean and standardized streamflow index were

chosen. Both observed and forecasted streamflow showed

no drought evidence in this basin.

Keywords Streamwater � Drought � Forecasting �
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1 Introduction

Streamflow is a key hydrological process that summarizes

various atmospheric, land surface and subsurface compo-

nents of the hydrologic cycle (Pielke et al. 2005). In Spain,

as in other countries, the availability of water for different

uses from forested watersheds is a subject of concern.

However, available long-term hydrological information, at

watershed level, is still scarce in NW Spain (Gras 1992,

1993; Gras et al. 1993; Fernández et al. 2006).

Projections for the current century from global change

scenarios predict a decrease in annual precipitation in NW

Spain of between 10 and 15% (De Castro et al. 2005).

Iglesias et al. (2005) argue that this probable decrease in

rainfall will affect runoff with a predicted reduction in

water resources of about 20% in subsequent years. Long-

term management must consider the potential effects of

climate change on seasonal variability, and on extreme and

mean values of hydrological processes. As pointed out by

Ma and Fu (2003), the decrease in precipitation is not a

drought signal due to the uncertainity of evaporation.

Although the definition of drought is not clear, it is com-

monly classified as meteorological, hydrological and

agricultural droughts, and many drought indices used for

assessing drought severity (Keyantash and Dracup 2002).

In this study, we used monthly streamflow to evaluate the

existence or not of drought in a small forested watershed.

As yet there is no such information available for the north

west of the Iberian Peninsula.

Several studies have developed methods of analysing

stochastic characteristics of hydrologic variables (e.g.

Chung and Salas 2000; Kim and Valdes 2003; Mishra and

Desai 2005) and particularly streamflow (Panu et al. 1978;

Govindaswamy 1991; Yürekli et al. 2005; Modarres 2007)

for drought forecasting. During the past decades, several

studies have developed methods of analysing stochastic

characteristics of hydrologic time series. The most widely

used model is the ARIMA model.

The ARIMA models seem to offer a potential to develop

reliable forecasts towards prediction of drought duration

and severity (Mishra and Desai 2005; Modarres 2007). The

ARIMA model approach has several advantages over other

methods, in particular, its forecasting capability, its richer

information on time-related changes, or the consideration

of serial correlation between observations. Also, few
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parameters are required for describing time series, which

exhibit non-stationarity both within and across the seasons.

The aim of this study was to develop a stochastic model

to forecast streamflow drought in a small forested water-

shed. The importance of considering the selected study-

area is because of the basin is covered by a forestry species

very important for the economy of the region and no study

was conducted earlier for drought analysis in this area.

2 Materials and methods

2.1 Study area

The experimental area is located 20 km north of Pontevedra

(42�3402800–42�3404800N and 8�3605700–8�3700800W; Fig. 1).

It is a small watershed (6.7 ha) covered by a Pinus pinaster

Ait. plantation. This watershed is part of the experimental

basins network of the Environmental Research Centre

(Xunta de Galicia). Mean altitude is 200 m. Soils are Humic

Umbrisols, and Alumiumbric Regosols (Calvo de Anta and

Macı́as 2001), sandy and sandy–loam textured and devel-

oped on granitic or granodiorite parent material. Climate is

temperate and rainy. Mean annual temperature is 14�C.

Mean temperature is 9�C in the coldest month and 20.5�C in

the hottest month. Average annual precipitation is

1,700 mm/year and 41% of this amount falls in the period

October–December. There is a dry period in summer (July–

September), when 12% of the annual precipitation falls.

A small river is contributing the flow in Caldas catch-

ment. The water is primarily used for P. pinaster

cultivation, an important economic resource in the area. It

is representative of these kind of plantations in the region

where most of the water demand for forest growth is

supplied by these small rivers.

2.2 Data collection

Mean precipitation data were obtained as an arithmetic

mean from a network of carefully located rainfall gauges in

the watershed. Streamflow was continuously measured at

the outlet of the catchment with a 90� V-notch weir with

standard ink scripture limnigraphs (OTT Kempten). Charts

were digitized and runoff calculated according to the weir

shape. The mean values of the hydrologic parameters in the

Caldas catchment are shown in Table 1.

2.3 Statistical analysis

A time series approach was used to model monthly

streamflow and to identify relationships between the

environmental variables and streamflow because of the

serial dependence of the data over time. Because of this

autocorrelation, observations over time are not independent

and therefore correlations with observations of environ-

mental data at various times violate the assumptions of

regression analysis.

The Box and Jenkins (1976) modelling approach was

used. ARIMA (p, q, d) models can have an autoregressive

term (AR) of order p, a differencing term (I) of order d, and

a moving average term of order q. The general non-sea-

sonal ARIMA model may be written as

/ Bð Þ 1� Bð ÞdYt ¼ h Bð Þat

where Yt is the observed series, B is the backshift operator;

that is BXt = Xt-1, /(B) is the autoregressive operator,

represented as a polynomial in the backshift operator of

order p: /(B) = 1 - /1(B) -���- /p(B)ph(B) is the mov-

ing-average operator, represented as a polynomial in theFig. 1 Location of study-site

Table 1 Summary of monthly and annual parameters in the Caldas

watershed during the period 1988–2006

Months Streamflow

(mm)

Precipitation

(mm)

Martonne

index

January 116.1 (24.1) 204.7 (29.8) 10.5 (1.4)

February 60.0 (9.5) 124.1 (17.1) 6.2 (0.9)

March 57.4 (13.2) 124.8 (27.1) 5.8 (1.3)

April 43.9 (6.2) 147.9 (24.7) 6.1 (0.9)

May 37.0 (5.3) 124.8 (18.5) 4.7 (0.7)

June 25.7 (3.1) 48.6 (7.9) 1.7 (0.3)

July 12.2 (1.9) 43.3 (10.2) 1.4 (0.3)

August 6.2 (0.7) 52.6 (12.4) 1.7 (0.4)

September 5.4 (0.7) 85.9 (15.6) 3.2 (0.5)

October 11.8 (2.3) 238.9 (24.2) 11.1 (1.5)

November 44.9 (12.5) 259.7 (37.4) 13.9 (2.3)

December 80.3 (23.4) 206.5 (34.4) 11.0 (1.8)

Annual mean 41.74 (13.64) 138.48 (28.37) 6.43 (1.51)

The standard error is shown in brackets
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backshift operator of order q: h(B) = 1 - h1B -���-
hqBqat, the random error.

For seasonal time series that contain cyclic features, the

multiplicative seasonal ARIMA is expressed as (p, d, q)

(P, D, Q) s where p is the order of non-seasonal auto-

regression, d, the number of regular differencing, q the

order of non-seasonal MA, P the order of seasonal auto-

regression, D, the number of seasonal differencing, Q the

order of seasonal MA, s the length of the season.

The seasonal ARIMA model is written as

/p Bð ÞUP Bsð Þ 1� Bð Þd 1� Bsð ÞDYt ¼ hq Bð ÞHQ Bsð Þat

Determination of the order of each term in the model is

made by examination of the raw data and plots of the

autocorrelation function (ACF) of the data. In ARIMA

models it is assumed that the series being modelled is

stationary (the series exhibit the same mean level and

variance in time). Appropriate differencing of the series or

logarithm transformation is performed (if required) to

achieve stationarity in mean and variance, respectively.

The Akaike’s Information Criterion (Akaike 1974) was

used for model selection. The statistic is used to evaluate

the goodness of fit with smaller values indicating a better

fitting and more parsimonious model than larger values.

After model identification, parameter estimates must be

obtained. These parameters should satisfy the conditions of

stationarity and invertibility for autoregressive and moving

average models, respectively (Box and Jenkins 1976; Salas

et al. 1980). We used maximum likelihood to estimate the

model parameters. ARIMA models can incorporate many

series of independent variables. The general form of a

dynamic regression is

P Bð ÞYt ¼ bXt þ at

where P(B) is the polynomial in the backshift operator as

those explained in the ARIMA model, b correlation coef-

ficient of the independent variables (Xt) and at, the random

error.

Chen et al. (2007) stated that the variation in runoff is the

result of the combined effect of precipitation and temperature,

so we assume that the variables precipitation and Martonne

index influenced streamflow. The Martonne index is the ratio

between the monthly precipitation (P) and the mean values of

temperature (T) plus 10�C (Martonne 1973). We used plots of

cross-correlation coefficients to identify relationships

between the explanatory and dependent variables.

The remaining residual series should have characteris-

tics of random error. Time independence of the residuals

was checked with the Portmanteau lack of fit test (Salas

et al. 1980). Normality and homoscedasticity of residuals

were tested with the Kolmogorov–Smirnov and Breusch–

Pagan tests, respectively (Yürekli et al. 2005).

2.3.1 Model calibration

In order to evaluate the accuracy of the streamflow fore-

cast, the following tests were used:

• Correlation between observed and forecasted series.

• Coefficient of efficiency (Brath and Rosso 1993)

E ¼ 1� R Qt � Q�t
� �2

=R Qt � Qmð Þ2

where Q�t is the discharge forecasted, Qt is the corre-

sponding observed streamflow and Qm is the mean of the

whole series of the observed streamflow.

• The root mean squared errors for forecasted

streamflow.

RMSE ¼ R Fi � Oið Þ=nð Þ1=2

where Fi and Oi are forecasted and observed streamflow.

• The Wilcoxon rank sum method for the difference

between forecasted and observed streamflow means.

• Non-parametric test for the quality of observed and

forecasted streamflow variances (Levene 1960).

Model computation was made with streamflow monthly

data from between January 1988 and December 2006. The

period January and December 2007 was considered in

forecasting estimations of the model.

We used two additional periods for forecasting to test

the validity of the model for forecasting. In the first

period the model was used to forecast monthly stream-

flow for the period January 2003 to December 2007. In

the second, for the period January 2005 and December

2007.

The SPSS (2004) statistical package was used for car-

rying out the analysis.

2.4 Drought definitions and thresholds

A drought was defined by Yevjevich (1967) as an unin-

terrupted sequence of streamflow below an arbitrary level.

The mean value of the streamflow time series during the

study-period was selected as the truncation level; the

monthly mean values were also applied as the second

truncation level for each month (Modarres 2007).

As defined by Modarres (2007) we used the standardized

streamflow index (SSFI) as a drought index. This index is

statistically similar to the SPI defined by McKee et al.

(1993) for meteorological drought analysis. The SSFI for a

given period is defined as the difference between stream-

flow from mean divided to standard deviation (Modarres

2007). Weather classification based on SPI is shown in

Table 2.
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3 Results and discussion

In the first step of model identification, the data was

found to be non-normally distributed (Kolmogorov–

Smirnov statistic, D = 0.242), and therefore a logarithmic

transformation was applied. The Kolmogorov–Smirnov

(K-S) test of normality was also done for the transformed

series and the null hypothesis of normality is accepted at

5% level as the K-S statistic, D = 0.031 is smaller than

the critical value (0.200). The ACF curve (Fig. 2)

decayed with mixture of sine and exponential curve and

in partial autocorrelation function (PACF) there was a

significant lag at 1, which suggests an AR process. In the

PACF there were significant spikes present near lag 12,

24 and 36, and therefore the series was seasonally dif-

ferenced with 12 as the period. The plot of ACF and

PACF after seasonal differenciation is shown in Fig. 3. In

the PACF there was a significant spike at lag 1, which

indicates an AR (1) as non-seasonal part of the model.

The identification of best model for streamflow series

based on minimum AIC is shown in Table 3. The model

finally selected was an ARIMA (1,0,0) (2,1,0)12. The

Table 2 Weather classification based on SPI

Values Class

[2.0 Extremely wet

1.55–1.99 Very wet

1.0–1.49 Moderately wet

-0.99 to 0.99 Near normal

-1 to -1.49 Moderately dry

-1.5 to -1.99 Severely dry

[-2.0 Extremely dry
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Fig. 2 Autocorrelation function (ACF) and partial autocorrelation

function (PACF) plots of non-seasonal differenced time series
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Fig. 3 Autocorrelation function (ACF) and partial autocorrelation

function (PACF) plots of seasonal differenced time series

Table 3 Comparison of AIC for selected candidate models

Model AIC

ARIMA (1,0,0) (2,1,0)12 466.089

ARIMA (1,1,0) (2,1,0)12 499.294

ARIMA (2,0,0) (2,1,0)12 468.037

ARIMA (2,1,0) (2,1,0)12 499.643
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statistical analysis of model parameters is shown in

Table 4. The model equation is as follows:

1� 0:63Bð Þ 1þ 0:71B12 þ 0:46B24
� �

1� B12
� �

Yt ¼ at

The results of the Porte Manteau lack-of-fit test indicate

that the residuals of this model are independent

(Qr = 48.76 lower than the critical value 63.98). The

normality and heteroscedasticity tests statistics are 0.148

(\0.200 critical value) and 0.60 (\1.46 critical value),

respectively, which confirm normality and homogeneity of

the residuals. The comparison between observed and

forecasted streamflow series can be seen in Fig. 4.

The comparison between forecasting periods (Table 5),

showed that the scenarios 2 (2005–2007) and 3 (2007) are

suitable for streamflow forecasting. However, higher cor-

relation and efficiency coefficient were obtained in the

scenario 3 in which 1-year monthly streamflow has been

forecasted. This indicates that the model is suitable for

forecasting for 12 months ahead which was the objective

of this study.

We also considered including some independent vari-

ables in the ARIMA model to improve the streamflow

forecast. The variables used were monthly precipitation

and monthly values of the Martone index (Martonne 1973).

The mean values of these parameters during the study

period are listed in Table 1. The lowest AIC was obtained

for the model 3 (Table 6). In all cases, residuals were time-

independent, homoscedastic and normally distributed

(Table 7) as the values of the three statistics were lower

Table 4 Results of parameter estimation for the selected model

Model AIC Parameters Values Standard error t-Ratio P \ 0.05

Model 1 466.089 /1 0.630 0.054 11.663 0.000

U1 -0.706 0.063 -11.261 0.000

U2 -0.455 0.061 -7.448 0.000
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Fig. 4 Comparison of observed data with predicted data using the

ARIMA model

Table 5 Test results for the comparison between forecasted and observed series using different forecasting scenarios (95% confidence level)

Forecasting

scenario

Correlation

coefficient

Coefficient

of efficiency

RMSE Wilcoxon’s

P value

Levene’s

P value

Scenario 1 (2003–2007) 0.51 0.350 3.10 0.034 0.027

Scenario 2 (2005–2007) 0.60 0.578 2.92 0.096 0.057

Scenario 3 (2007) 0.80 0.920 2.34 0.388 0.778

Table 6 Results of parameter estimation for the selected model including explanatory variables

Model AIC Parameters Values Standard error t-Ratio P \ 0.05

Model 2 404.452 /1 0.613 0.052 11.792 0.000

U1 -0.679 0.066 -10.299 0.000

U2 -0.370 0.065 -5.690 0.000

Precipitation 0.003 0.000 8.669 0.000

Model 3 402.484 /1 0.612 0.052 11.734 0.000

U1 -0.687 0.066 -10.370 0.000

U2 -0.349 0.065 -5.323 0.000

Martonne index 0.062 0.007 8.915 0.000
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than the respective critical values. The results of the model

calibration (Table 8) showed that the models are appro-

priate for streamflow forecast, although the best

adjustments were shown by the model that included the

Martone index.

1� 0:61Bð Þ 1þ 0:69B12 þ 0:35B24
� �

1� B12
� �

Yt

¼ 0:06 Martonne indext þ at

This result appeared to indicate the indirect influence of

monthly precipitation and temperature on water yield in this

small watershed. Precipitation was observed to have a sig-

nificant effect on water yield after perturbations in a small

Eucalyptus globulus Labill. catchment in this area (Fern-

ández et al. 2006). Chen et al. (2007) also stated the influence

of temperature and precipitation on streamflow trends.

Observed and forecasted values from the first (Fig. 5a)

and third model (Fig. 5b) were used to identify a drought

period during 2007. The comparison between observed and

forecasted streamflow with these models and the truncation

levels (annual and monthly streamflow means) chosen for

drought forecasting revealed that there was no significant

drought in 2007 (Fig. 5). However, a trend towards a drier

winter was apparent. Zheng et al. (2006) also detected a

reduction in streamflow in winter in the Yellow River in

China whereas changes in the annual streamflow were less

apparent.

Following the SPI drought severity classification

(Table 2) the comparison between observed and forecasted

SSFI (Table 9) also showed that there is no appreciable

drought in the study area.

4 Conclusions

We can conclude that the model is valid for forecasting of

monthly streamflow. Adding explanatory variables to the

ARIMA models could enhance the accuracy of the model for

streamflow forecasting. The proposed explanatory variables,

precipitation or the combination between precipitation and

air temperature (Martonne index), are not difficult to obtain

and is feasible to be incorporated in a predictive model. No

Table 7 Time independence and normality of residuals tests for the selected model including explanatory variables

Model Kolmogorov–Smirnov

statistic

Critical

value

Breusch–Pagan

statistic

Critical

value

Portmanteau

Q statistic

Critical

value

Model 2 0.120 0.200 0.46 1.46 42.88 63.98

Model 3 0.130 0.200 0.52 1.46 3.72 63.98

Table 8 Test results for the comparison between observed and forecasted series at 95% confidence level

Correlation coefficient Coefficient of efficiency RMSE Wilcoxon’s P value Levene’s P value

Model 2 0.94 0.994 1.22 0.695 0.790

Model 3 0.94 0.999 0.54 1.000 0.989
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Fig. 5 Comparison of observed and forecasted streamflow from

model 1 (a) and 3 (b) and two drought truncation levels
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evidence of drought was observed in this small watershed.

This result was obtained using simple thresholds (mean and

monthly mean) or the normalized streamflow drought index.

The incorporation of the explanatory variables in the AR-

IMA model will result in better predictions for drought

forecasting and water resources management.

In general, it can be concluded that there is no evidence

of drought conditions in the study area, although the results

may be constrained by the time-span of model

construction.

Acknowledgments This study was funded by the Galician

Research, Science and Technology Commission, the National Insti-

tute of Agricultural Research of Spain (INIA) and the Galician

Research and Development Directorate through the projects 8636,

SC-93-096 and PGIDIT05RFO50202PR, respectively. This work was

also co-financed by the European Social Fund (Dr. C. Fernández). We

are grateful to all those who have helped with data collection, par-
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